A typical byte in a computer is represented as follows:
$01010101$
The very same byte can be represented in a quantum computer (called a Qubyte) as follows:
$\ket{0},\ket{1},\ket{0},\ket{1},\ket{0},\ket{1},\ket{0},\ket{1}$
or
$\left[\begin{array}{ll}1 \\ 0\end{array}\right] , \left[\begin{array}{ll}0 \\ 1\end{array}\right] , \left[\begin{array}{ll}1 \\ 0\end{array}\right] ,\left[\begin{array}{ll}0 \\ 1\end{array}\right] ,\left[\begin{array}{ll}1 \\ 0\end{array}\right] ,\left[\begin{array}{ll}0 \\ 1\end{array}\right] ,\left[\begin{array}{ll}1 \\ 0\end{array}\right] , \left[\begin{array}{ll}0 \\ 1\end{array}\right]$
We now, need a way to combine these quantum systems together into one quantity.
VIA TENSOR PRODUCT
For this purpose, we use the Tensor Product, which is denoted by $\otimes$.
<aside> ✏️ Mathematically, the tensor product of matrices, is a function:
$\otimes : \mathbb{C}^{m \times m^{'}} \times \mathbb{C}^{n \times n^{'}} \longrightarrow \mathbb{C}^{mn \times m^{'}n^{'}}$
and it is defined as:
$(A \otimes B)[j, k] = A[j/n,k/m] \times B[j \% n, k \% m]$
it is derived, that for vectors:
$\otimes : \mathbb{C}^{m} \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m\times n}$
</aside>
Via the tensor product, we now write our byte $01010101$ as:
$\ket{0}\otimes\ket{1}\otimes\ket{0}\otimes\ket{1}\otimes\ket{0}\otimes\ket{1}\otimes\ket{0}\otimes\ket{1}$
This representation is, then condensed and written as:
$\ket{01010101}$
Similarly, any byte can now be represented as an element of:
$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes\mathbb{C}^2 \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes 8} \sim \mathbb{C}^{256}$
$\begin{matrix}\ket{00000000}\\\ket{00000001}\\\ket{00000010}\\\vdots\\\ket{11111110}\\\ket{11111111}\end{matrix} \in (\mathbb{C^2})^{\otimes 8}$
COLUMN VECTOR REPRESENTATION
A byte can also be represented by a column vector as follows:
$\begin{matrix}00000000\\00000001\\00000010\\\vdots\\11111110\\11111111\end{matrix}\left[\begin{matrix}0\\0\\0\\\vdots\\1\\0\end{matrix}\right] = \ket{11111110}$
Clearly, such a column vector (doesn’t permit superposition) is only applicable for classical computers, thus for a quantum computer the same column vector will be written as:
$\begin{matrix}00000000\\00000001\\00000010\\\vdots\\11111110\\11111111\end{matrix}\left[\begin{matrix}\alpha_1\\\alpha_2\\\alpha_3\\\vdots\\\alpha_{255}\\\alpha_{256}\end{matrix}\right]$ where, $\sum_{i=1}^{256} |\alpha_i|^2 = 1$
This, implies that indicating the state of eight qubits requires 256 complex numbers.
Emulating a quantum computer, as small as that with a 64-qubit register, would require storing $2^{64}$ on a classical computer, which is way beyond the current storage capacity.
PAIR OF QUBITS
A pair of qubits can we written in the following different ways:
$\begin{matrix}\ket{0} \otimes \ket{1} & \ket{0 \otimes 1} & \ket{0}\ket{1} & \ket{0,1} &\ket{01}\end{matrix}$
Yet another way to represent this qubit pair is via column vector representation:
$\begin{matrix}00\\01\\10\\11\end{matrix}\left[\begin{matrix}0\\1\\0\\0\end{matrix}\right]$
A general state of a two-qubit system can be written as
$\ket{\psi} = c_{0,0}\ket{00} + c_{0,1}\ket{01} + c_{1,0}\ket{10} + c_{1,1}\ket{11} = \begin{matrix}00\\01\\10\\11\end{matrix}\left[\begin{matrix}c_{0,0}\\c_{0,1}\\c_{1,0}\\c_{1,1}\end{matrix}\right]$
The tensor product of two states is not commutative:
$\ket{0 \otimes 1} \ne \ket{1 \otimes 0}$
Given, two Hilbert Spaces $H_1$ & $H_2$ of dimentions $N_1$ & $N_2$ respectively, we can put them together to construct a larger Hilbert Space $H = H_1 \otimes H_2$ of dimension $N_1.N_2$.
